True or False (4 pts each)

T F \[\int_{x=0}^{2} \int_{y=0}^{\sqrt{4-x^2}} x^2y \, dy \, dx = \int_{r=0}^{2} \int_{\theta=0}^{\pi} r^4 \sin^2(\theta) \cos(\theta) \, d\theta \, dr \]

T F If \(f(x, y) \) is a continuous function in the plane then

\[\int_{y=a}^{b} \int_{x=y}^{5} f(x, y) \, dx \, dy = \int_{x=a}^{b} \int_{y=x}^{5} f(x, y) \, dy \, dx \]

T F If \(D \) is the region with vertices \((0,0), (0,1), (1,0)\) then \(\iint_{D} 4 \, dA = 2 \)

T F \(\iint_{D} f(x, y) \, dx \, dy \) is the volume under the graph \(z = f(x, y) \)

Find the area outside the curve \(r = 1 + \cos(\theta) \) and inside the curve \(r = 3 \cos(\theta) \). (8 pts)

\[\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \int_{r=1+\cos \theta}^{3 \cos \theta} r \, dr \, d\theta \]
I’ll leave the integration up to you. You should get a couple half angles. Be careful with the fractions.
Integrate the following. (6 pt ea)

\[
\int_{x=0}^{1} \int_{y=0}^{\sqrt{x}} y^2 e^{x^2} \, dy \, dx
\]

\[
\frac{e-1}{6}
\]

\[
\int_{x=0}^{3} \int_{y=0}^{x^2} x^2 y \, dy \, dx
\]

\[
\frac{3^{12}}{24}
\]

Set up the integral to find the volume under \(x^2 + z^2 + y^2 = 4 \) and above the cone \(z = \sqrt{4x^2 + 4y^2} \). (8 pts)

\[
\int_{r=0}^{2/\sqrt{3}} \int_{\theta=0}^{2\pi} \int_{z=2r}^{\sqrt{4-r^2}} r \, dz \, d\theta \, dr
\]
Set up the integral to find the surface area of that part of the sphere of radius 4 centered at the origin in the first octant above the cone $16z = \sqrt{x^2 + y^2}$. (8 pts)

The surface is $f(x, y) = \sqrt{16 - x^2 - y^2}$. The integral before picking a coordinate system is

$$\int_0^4 \int_0^{\frac{\pi}{2}} \int_0^{\tan^{-1}\left(\frac{1}{16}\right)} \sqrt{16 - x^2 - y^2} \, r^2 \sin \theta \, dr \, d\theta \, d\phi$$

In spherical coordinates $r = 4$, $\theta = 0.2\pi$, and $\phi = 0$.\tan^{-1}\left(\frac{1}{16}\right)$

Rewrite the integral $\int_{y=0}^{1} \int_{z=y^2}^{1} \int_{x=0}^{1-y} f(x, y, z) \, dx \, dz \, dy$ in the order $dz \, dy \, dx$. (8 pts)

$$\int_{x=0}^{1} \int_{y=0}^{1-x} \int_{z=y^2}^{1} f(x, y, z) \, dz \, dy \, dx$$
Set up the integrals to find the center of mass of the region bounded by the inside of $x^2 + y^2 = 2x$ and inside of $x^2 + y^2 = \frac{1}{2}$ where the density function is proportional to the distance from the intersection point of the two circles in the first quadrant. (12 pts)

The two circles intersect at $\left(\frac{1}{4}, \frac{\sqrt{7}}{4}\right)$. Therefore the density

$$\rho(x, y) = \sqrt{(x - \frac{1}{4})^2 + (y - \frac{\sqrt{7}}{4})^2}.$$ The mass integral is

$$\int_{y=\frac{-\sqrt{2}}{4}}^{y=\frac{\sqrt{2}}{4}} \int_{x=1-\sqrt{1-y^2}}^{x=\frac{1}{2}-\sqrt{\frac{1}{2}-y^2}} \rho(x, y) \, dx \, dy.$$ The other integrals are similar.
Find the volume of the solid cut from the sphere of radius 2 (centered at the origin) by the planes $x = y$ and $x = 2y$. (8 pts)
R is the region bounded by $y = x, y = x - 2, y = -2x, y = 3 - 2x$ (see graph below). Apply the transformation $x = \frac{1}{3}(u + v), y = \frac{1}{3}(u - 2v)$ and graph the resulting figure label the lines and the corners and where they end up. (8 pts)

Replace the x,y in each equation and simplify. Plot each new equation and label.
Find the Jacobian of the transformation above. (6 pts)

\[\begin{vmatrix} \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{-2}{3} \end{vmatrix} = \frac{3}{9} \] The jacobian is the absolute value of the determinant.

Use the previous information to integrate \(\int_{R} \int xy \, dA \). (6 pts)