Section #4.3 – Global Maxima and Minima

MA TH 2313

Definition: For any function \(f \):

- \(f \) has a global min at \(p \) if \(f(p) \leq f(x) \) for all \(x \in I \).
- \(f \) has a global max at \(p \) if \(f(p) \geq f(x) \) for all \(x \in I \).

Label all global extrema:

To find global (absolute) extrema

1. Find c.p.
2. Find \(f(\text{c.p.}) \) and \(f(\text{endpt}) \)
3. smallest # in part 2 is global min.
 largest # in part 2 is global max.

WARNING: Graph the function if a vertical asymptote is in the given interval or if no interval is given.

FACT: An endpoint may be a global extremum but not a local one.

Extreme Value Theorem (Not in book)
If \(f(x) \) is cont. on \([a, b]\) then \(f \) attains both its abs. max and its abs min. on \([a, b]\).

Example: Find abs. ext.

1. \(f(x) = \frac{1}{4}x^3 - x^2 - 3x + 1 \) on \([-2, 4]\)
Section #4.3 – Global Maxima and Minima

MATH 2313

2. \(f(x) = x^3 - 6x^2 \) on \([2, 5]\)

3. \(f(x) = \frac{x^2}{x-1} \) on \([-1, 3]\)

1. Classify each point as c.p, local max/min, global ext., and/or an endpoint.

(a)
(b)
(c)
(d)
(e)
(f)
(g)
(h)
(i)
(j)