Section #2.1–Instantaneous Rate of Change
MATH 2313

Remember rate of change = \(\frac{f(b)-f(a)}{b-a} \) (slope between \(a \) and \(b \))

Def: instantaneous velocity of an object at time \(t \) is defined to be the limit of the average velocity of the object over shorter and shorter time intervals.

(Could be thought of as the slope of the tangent line)

Discussion: What does the speedometer (possible) read on a car going 30 miles in 1 hour?
One mile in 2 minutes?
44 feet in one second?

Example:

1. An object is projected upward from the ground at \(t = 0 \) and its distance above the ground at time \(t \) is given in the following table:

\[
\begin{array}{c|c|c|c|c|c}
\hline
\text{\(t \) (sec)} & 0 & 1 & 2 & 3 & 4 & 5 \\
\text{\(g \) (ft)} & 0 & 72 & 112 & 120 & 90 & 40 \\
\hline
\end{array}
\]

(a) Find the average velocity between
[1,2]
[2,3]
[3,4]
[1,3]
[0,5]

(b) Estimate the velocity at \(t = 2 \) and at \(t = 3 \).
Section #2.1–Instantaneous Rate of Change

MA TH 2313

Def: The instantaneous rate of change of \(f \) at \(a \) (also called the rate of change of \(f \) at \(a \)) is defined to be the limit of the average rates of change of \(f \) over shorter and shorter intervals around \(a \).

Def: The derivative of \(f \) at \(a \) written \(f'(a) \) is

Example:

2. What’s the velocity at \(t = 2 \) seconds?

<table>
<thead>
<tr>
<th>(t) (sec)</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
<th>2.5</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s(t)) (ft)</td>
<td>72</td>
<td>95.539</td>
<td>112</td>
<td>119.13</td>
<td>120</td>
</tr>
</tbody>
</table>

3. \(t \) (sec) | 1.9 | 1.99 | 1.999 | 2 | 2.001 | 2.01 | 2.1 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(y) (ft)</td>
<td>109.44</td>
<td>111.7584</td>
<td>111.976</td>
<td>112</td>
<td>112.0240</td>
<td>112.2384</td>
<td>114.24</td>
</tr>
</tbody>
</table>

4. If the quantity of a drug in the bloodstream at \(t \) seconds is \(Q(t) = 25e^{-0.2t} \), estimate the rate of change of the quantity in the bloodstream at \(t = 4 \) seconds.

5. Estimate \(f'(2) \) for \(f(x) = 2 - x^3 \). Use the table method, with \(\Delta x = 0.1 \) and \(\Delta x = 0.01 \)
Section #2.1–Instantaneous Rate of Change

MATH 2313

Summary

Average rate of change of \(f \) between \(a \) and \(b \) is the slope of the secant line to \(f \) between \(a \) and \(b \).

Average rate of change = \(\frac{f(b) - f(a)}{b - a} \) (also called the difference quotient)

Instantaneous rate of change is only at one point \(A \) is the same as the slope of the tangent line to the curve at \(A \).

<table>
<thead>
<tr>
<th>(t) (years since 1978)</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>9</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P) (% with microwave)</td>
<td>8</td>
<td>14</td>
<td>21</td>
<td>34</td>
<td>61</td>
<td>79</td>
</tr>
</tbody>
</table>

6. If \(P = f(t) \) is the percentage of households with a microwave oven \(t \) years since 1978.

(a) Does \(f'(6) \) appear positive or negative?

(b) What are the units on \(f'(t) \)?

7. From the graph answer the following:

(a) At what labeled points is the derivative:
positive?
negative?
zero?

(b) Between which pair of consecutive points is the average rate of change:
greatest?
least?
closest to zero?

(c) At what point(s) is the instantaneous rate of change: greatest?
least?
closest to zero?

Given the graph of \(f(x) \), answer the following:

(a) Indicate whether each of the following quantities is positive or negative and illustrate your answers graphically:

i. \(f'(0) \)

ii. \(f(3) - f(2) \)

iii. \(\frac{f(5) - f(1)}{4} \)

(b) Arrange the quantities in part (a) in ascending order.

(c) Find all \(x \) values at which the derivative of \(f \) is zero.